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The fast sampling algorithm for Lie-Trotter products
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A fast algorithm for path sampling in path integral Monte Carlo simulations is proposed. The
algorithm utilizes the Lévy-Ciesielski implementation of Lie-Trotter products to achieve a math-
ematically proven computational cost of n log

2
(n) with the number of time slices n, despite the

fact that each path variable is updated separately, for reasons of optimality. In this respect, we
demonstrate that updating a group of random variables simultaneously results in loss of efficiency.
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Path sampling in path integral Monte Carlo simula-
tions becomes more difficult in the limit of a large num-
ber of path variables or time slices, not only because
of the build-up of correlation among the variables that
are sampled, but also because of the shear increase in
the number of random variables. Over the time, various
approaches have been attempted in order to overcome
the slowing down of the simulation. For direct sampling
of Lie-Trotter products, among the most successful are
the staging method [1], the threading algorithm [2], the
bisection method [3], and the multigrid technique [4].
The so-called “normal mode” and Fourier formulations of
path integrals have also been shown to improve sampling
[5, 6, 7]. The last techniques are part of a larger class
of path integral methods, class that is called the random
series implementation [8]. To give a few examples, the
computational effort in most random series approaches
scales as n2 with the number of path variables, whereas
the bisection method may reduce the effort down to n1.4

[3].

The random series approach, at least in the primi-
tive form, is not particularly efficient [8]. However, it
reveals the incredibly large variety of possible different
path integral formulations, while also being suggestive of
more optimal approaches [9]. At the same time, it shows
the strong connection that exists between these differ-
ent forms, connection that is realized by means of cer-
tain orthogonal transformations. For Lie-Trotter prod-
ucts, Predescu and Doll [10] have shown that there is an
infinity of possible normal mode representations, which
can be obtained one from the other by certain orthogo-
nal transformations. One such transformation leads to
the Lévy-Ciesielski representation, which has very spe-
cial properties when it comes to numerical implemen-
tation. For instance, it allows for fast computation of
paths, with a scaling of n log2(n) for an entire path, as
opposed to n2, for other representations. The only re-
striction is that the number of time slices must be of the
form n = 2k, a condition reminiscent of the fast Fourier
transform. The algorithm we propose for the sampling
of Lie-Trotter products utilizes the Lévy-Ciesielski repre-

sentation to achieve a similar goal: sampling in n log2(n)
operations of entire paths, while updating each path vari-
able individually. Since any algorithm that computes en-
tire paths every time has a computational effort propor-
tional to n, we see that the proposed algorithm is highly
efficient. Since it is not necessary to update all path vari-
ables all the time, the proposed algorithm can be made
even more efficient by using it in conjunction with the
multilevel Monte Carlo sampling technique [3].

We commence by casting an arbitrary Lie-Trotter
product in the Lévy-Ciesielski form. In order to do so, we
first enumerate the basic properties of the Lévy-Ciesielski
series representation of the Brownian bridge. For more
details, the reader is advised to consult Refs. 10, 11, 12.
For k = 1, 2, . . . and j = 1, 2, . . . , 2k−1, the Schauder
functions Fk,j(u) are generated by translations and di-
latations of the function

F1,1(u) =







u, u ∈ (0, 1/2],
1 − u, u ∈ (1/2, 1),

0, elsewhere.
(1)

More precisely, we have

Fk,j(u) = 2−(k−1)/2F1,1(2
k−1u − j + 1), (2)

for k ≥ 1 and 1 ≤ j ≤ 2k−1.
If we multiply them by 2−(k−1)/2, the Schauder func-

tions make up a pyramidal structure organized in layers
indexed by k, as shown in Fig. 1. The supports (the sets
on which the functions do not vanish) of the Schauder
functions are the open intervals of the form (uk,j−1, uk,j),
for 1 ≤ j ≤ 2k−1, where uk,j = j2−(k−1). The supports
are disjoint for functions corresponding to the same layer
k. Because of this property, we have the equality

2k−1

∑

j=1

ak,jFk,j(u) = ak,[2k−1u]+1Fk,[2k−1u]+1(u), (3)

for any sequence of numbers ak,1, ak,2, . . . , ak,2k−1 . Here,
[x] denotes the largest integer smaller or equal to
x, whereas for u = 1, the quantities ak,2k−1+1 and
Fk,2k−1+1(1) are defined to be equal to 0.
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FIG. 1: A plot of the renormalized Schauder functions for
the layers k = 1, 2, and 3, showing the pyramidal structure.

Let {ak,j; k = 1, 2, . . . ; j = 1, 2, . . . , 2k−1} be an infinite
sequence of independent identically distributed standard
normal variables. From Eq. (3) and the Lévy-Ciesielski
construction of the Brownian bridge [10, 11, 12], we have
that

B0
u

d
=

∞
∑

k=1

ak,[2k−1u]+1Fk,[2k−1u]+1(u). (4)

In words, the right-hand side random series is equal in
distribution to a standard Brownian bridge.

Let n = 2k − 1 be a fixed number and consider the
equidistant points uj = j2−k, with 1 ≤ j ≤ 2k − 1 = n
(these points were denoted before by uk+1,j , but we shall
drop the index k + 1 to avoid cluttering the formulas).
Because the Schauder functions Fl,i(u) vanish at these
points for all levels l ≥ k + 1, it follows that the random
sums

k
∑

l=1

al,[2l−1uj ]+1Fl,[2l−1uj ]+1(uj)

for j = 1, 2, . . . , n have joint distribution equal to the
joint distribution of the random variables B0

uj
. By the

definition of the Brownian bridge, the joint distribution
of the latter variables is given by the formula

1

p1(0, 0)
pu1

(0, x1)pu2−u1
(x1, x2) · · · p1−un

(xn, 0), (5)

with pα(x, x′) defined by

pα(x, x′) = (2πα2)−1/2 exp
[

−(x′ − x)2/(2α2)
]

. (6)

Using this observation, the notation xr(u) = x+(x′−x)u,
and the definition σ2 = ~

2β/m0, one easily proves that
the joint distribution of the random variables

xr(uj) + σ

k
∑

l=1

al,[2l−1uj ]+1Fl,[2l−1uj ]+1(uj) (7)

for j = 1, 2, . . . , n is given be the formula

1

pσ(x, x′)
pσu1

(x, x1)pσ(u2−u1)(x1, x2) · · · pσ(1−un)(xn, x′).

(8)

Because the density matrix of a free particle is strictly
positive, any short-time approximation ρ0(x, x′; β) can
be put in the product form

ρ0(x, x′; β) = ρfp(x, x′; β)r0(x, x′; β). (9)

Letting x0 = x, xn+1 = x′, u0 = 0, and un+1 = 1, the
n-th order Lie-Trotter product obtained from the short-
time approximation considered above takes the form

ρn(x, x′; β) =

∫

Rn

n
∏

i=0

pσ(ui−ui+1)(xi, xi+1)

×
n
∏

j=0

r0(xj , xj+1; β/2k)dx1 · · · dxn. (10)

From the last equation and the fact that the distribu-
tion given by Eq. (8) is the distribution of the random
variables appearing in Eq. (7), we readily obtain the fol-
lowing Lévy-Ciesielski form of Lie-Trotter products for
n + 1 = 2k time slices

ρn(x, x′; β) = ρfp(x, x′; β)

∫

R

da1,1 · · ·

∫

R

dak,2k−1 (2π)−n/2
k
∏

l=1

2l−1

∏

i=1

exp
(

−a2
l,i/2

)

×

n
∏

j=0

r0

[

xr(uj) + σ

k
∑

l=1

al,[2l−1uj ]+1Fl,[2l−1uj ]+1(uj), (11)

xr(uj+1) + σ

k
∑

l=1

al,[2l−1uj+1 ]+1Fl,[2l−1uj+1]+1(uj+1); β/2k

]

.
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This formula has been first introduced in Ref. [10], albeit
for some specialized short-time approximations.

We have already mentioned that one of the advantages
of the Lévy-Ciesielski form for Lie-Trotter products is
that it enables fast computation of paths [10], while main-
taining the random series appearance of the final expres-
sion. This is so because for each uj, one needs to perform
a number of k = log2(n + 1) operations in order to com-
pute the coordinate uj of the path. This translates into a
scaling of (n+1) log2(n+1) operations for a whole path.

As announced in the beginning of the letter, a second

advantage of the Lévy-Ciesielski form is that it allows
for fast Monte Carlo sampling of the distribution given
by the right-hand side of Eq. (11). The algorithm is as
follows. A trial move is proposed for all 2l−1 variables
al,i that correspond to a single level l. However, the ac-
ceptance/rejection decision is taken individually for each
path variable, because these variables are statistically in-
dependent. To see this, first observe that the part of the
product distribution in Eq. (11) that only involves the
path variables for the layer l factorizes as

2l−1

∏

i=1







(2π)−1/2e−a2
l,i/2

i2k−l+1
−1

∏

j=(i−1)2k−l+1

r0

[

xr(uj) + σ

k
∑

l=1

al,[2l−1uj ]+1Fl,[2l−1uj ]+1(uj),

xr(uj+1) + σ
k
∑

l=1

al,[2l−1uj+1]+1Fl,[2l−1uj+1]+1(uj+1); β/2k

]}

. (12)

No two factors defined by the curly brackets contain a
same variable al,i. Indeed, given i ∈ {1, 2, . . .2l−1}, only
the function Fl,i(u) may be non-zero for the values uj

with (i − 1)2k−l+1 ≤ j ≤ i2k−l+1. Thus, each factor de-
fined by the curly brackets appearing in Eq. (12) contains
one and only one variable al,i. Therefore, the variables
al,i are and should be treated as independent during the
Monte Carlo simulation. Each proposal al,i → a′

l,i must

be tested separately using the weight given by the appro-
priate factor and accepted or rejected according to the
Metropolis-Hastings rule.

Let us analyze the efficiency of the algorithm. First,
there are k = log2(n + 1) layers. For each layer, one
evaluates the function r0(x, x′; β) exactly n + 1 times, in
order to update all variables from the layer, individually.
Thus, the computational effort to update all variables in-
dividually is proportional to (n+1) log2(n+1). Since any
algorithm must have a scaling of at least n + 1 [this is
the computational effort necessary to evaluate the distri-
bution given by Eq. (11) for any update attempt], we see
that the technique is extremely efficient, especially given
that all variables are moved separately. Of the variables
al,i, the most difficult to sample is a1,1, because its distri-
bution stretches over a larger region [the distance covered
by a variable al,j is of the order σ2−(l−1)/2, for low tem-
peratures]. Therefore, the overall computational effort to
perform an accurate sampling of all variables also scales
as (n + 1) log2(n + 1).

The reader may ask why we have insisted on up-
dating each path variable individually. The answer is
that there is a loss of efficiency if we try to update
more than one path variable at a time. We shall prove

this assertion in the remainder of the letter. Let’s as-
sume we are given a finite collection X1, X2, . . . , Xn

of independent identically distributed random vectors
(i.i.d.r.v’s), taking values in some space R

d. Let ρ(x),
with x ∈ R

d, be the normalized distribution of any of
the random vectors Xi. By independence, the overall
distribution is given by the product ρ(x1)ρ(x2) . . . ρ(xn),
which is a distribution on the space R

dn. Assume we
attempt to update all variables at once, using a trial dis-
tribution T (y1|x1)T (y2|x2) . . . T (yn|xn). The move to
(y1,y2, . . . ,yn) is then accepted with probability

min

{

1,

n
∏

i=1

ρ(yi)T (xi|yi)

ρ(xi)T (yi|xi)

}

, (13)

and rejected with the remaining probability. The average
acceptance probability is given by the formula

Ac(n) =

∫

R2d

dx1dy1 · · ·

∫

R2d

dxndynρ(x1)T (y1|x1)

· · · ρ(xn)T (yn|xn)min

{

1,
n
∏

i=1

ρ(yi)T (xi|yi)

ρ(xi)T (yi|xi)

}

.(14)

In these conditions, we have the following theorem that
guarantees that simultaneous sampling of i.i.d.r.v’s is in-
efficient.

Theorem 1 (Bad sampling of i.i.d.r.v’s) Except for

the ideal case T (y|x) = ρ(y) whenever T (y|x) 6= 0, there

is a strictly positive constant H such that

Ac(n) ∼ e−Hn. (15)
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This constant is given by the relative Shannon entropy

H = −

∫

R2d

ρ(x)T (y|x) log

[

ρ(y)T (x|y)

ρ(x)T (y|x)

]

dxdy. (16)

Proof of the theorem. For convenience, we let E denote
the expected value against the distribution ρ(x)T (y|x),
i.e., for some arbitrary function f(x,y),

E [f(X, Y )] =

∫

R2d

ρ(x)T (y|x)f(x,y)dxdy.

Then Eq. (14) can be written as

Ac(n) = E1 · · ·En min

{

1,

n
∏

i=1

ρ(Yi)T (Xi|Yi)

ρ(Xi)T (Yi|Xi)

}

. (17)

Now, consider the identity

n
∏

i=1

ρ(Yi)T (Xi|Yi)

ρ(Xi)T (Yi|Xi)

= exp

(

−n

{

−
1

n

n
∑

i=1

log

[

ρ(Yi)T (Xi|Yi)

ρ(Xi)T (Yi|Xi)

]

})

.(18)

The expression inside the curly brackets is a “time” aver-
age of independent identically distributed random vari-
ables. By the law of large numbers, this time average
will converge to a constant function, the value of which
is the “space” average

H = − lim
n→∞

1

n

n
∑

i=1

log

[

ρ(Yi)T (Xi|Yi)

ρ(Xi)T (Yi|Xi)

]

= −E

{

log

[

ρ(Y )T (X |Y )

ρ(X)T (Y |X)

]}

. (19)

Remembering the definition of E, we see that the right-
hand side of the previous equation is the Shannon en-
tropy of the probability measure ρ(x)T (y|x) relative to
the measure ρ(y)T (x|y). It is always non-negative and,
in fact, it is (strictly) positive except for the case

ρ(y)T (x|y) = ρ(x)T (y|x). (20)

To prove the last assertions, notice that − log(x) is a
strictly convex function and remember Jensen’s inequal-
ity, which in this case says

E {− log[f(X, Y )]} ≥ − log {E [f(X, Y )]} ,

with equality if and only if f(X, Y ) is constant. Then,

H = −

∫

R2d

ρ(x)T (y|x) log

[

ρ(y)T (x|y)

ρ(x)T (y|x)

]

dxdy

≥ − log

[
∫

R2d

ρ(x)T (y|x)
ρ(y)T (x|y)

ρ(x)T (y|x)
dxdy

]

= 0.

Eq. (15) follows from Eqs. (17), (18), and (19), to-
gether with the observation that min{1, exp(−Hn)} =

exp(−Hn), since H ≥ 0. Eq. (20) follows from the sec-
ond part of Jensen’s inequality. It is readily seen to be
equivalent to the statement ρ(y) = T (y|x), whenever
T (y|x) 6= 0. The proof of the theorem is concluded.

We have therefore demonstrated that there is a loss
of efficiency if simultaneous updating of path variables is
attempted, even for uncorrelated variables. If simultane-
ous sampling is performed, one must modify the proposal
T (y|x), so that the Shannon entropy decreases with the
dimensionality at a rate faster than O(1/n). Straight-
forward calculations show that, if the proposal T (y|x)
is uniform in a d-dimensional hypercube centered about
the previous position, the maximal displacements must
be decreased at a rate faster than or equal to O(n−1/2),
in order to prevent the severe degradation of the qual-
ity of the simulation predicted by Th. 1. For arbitrary
random series, there is little choice: either we decrease
the maximal displacements or update each path variable
individually, at a total cost proportional to n2.

However, for the Lévy-Ciesielski representation, the
random variables can be updated individually in
n log2(n) operations, where n is the number of time slices.
For this reason, as well as for the property of fast compu-
tation of paths, we believe that the sampling algorithm
we have presented will prove to be a valuable tool for
all path integral simulations that are implemented via
Lie-Trotter products. Again, the main property of the
Lévy-Ciesielski representation that has enabled the de-
velopment of this algorithm is the fact that the path
variables corresponding to a same layer are statistically
independent.
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